

MEASURE SPACES AND INTEGRATION OF MEASURABLE FUNCTIONS

MEASURABLE SETS

A **σ -algebra** is a family of sets $\mathcal{B} \subseteq \mathcal{P}(X)$ such that

- $X \in \mathcal{B}$
- $B \in \mathcal{B} \implies X \setminus B \in \mathcal{B}$
- $\{B_n\}_{n \in \mathbb{N}} \subseteq \mathcal{B} \implies \bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$

A pair (X, \mathcal{B}) is a **measurable space** if X is a set and $\mathcal{B} \subseteq \mathcal{P}(X)$ is a σ -algebra. Elements of \mathcal{B} are the **measurable sets**.

MEASURABLE FUNCTIONS

Given (X, \mathcal{B}) and (Y, \mathcal{C}) measurable spaces, a function $f : X \rightarrow Y$ is **measurable** if $C \in \mathcal{C} \implies f^{-1}(C) \in \mathcal{B}$.

If (X, \mathcal{B}) is a measurable space and (Y, τ) is a topological space, a function $f : X \rightarrow Y$ is **measurable** if $V \in \tau \implies f^{-1}(V) \in \mathcal{B}$.

Measurability criterion. Let (X, \mathcal{B}) be a measurable space and $f : X \rightarrow [-\infty, \infty]$. TFAE:

- (i) f is measurable
- (ii) for every $c \in \mathbb{R}$, $\{f > c\} \in \mathcal{B}$
- (iii) for every $c \in \mathbb{R}$, $\{f \geq c\} \in \mathcal{B}$
- (iv) for every $c \in \mathbb{R}$, $\{f < c\} \in \mathcal{B}$
- (v) for every $c \in \mathbb{R}$, $\{f \leq c\} \in \mathcal{B}$

MEASURES

Let (X, \mathcal{B}) be a measurable space. A **measure** is a function $\mu : \mathcal{B} \rightarrow [0, \infty]$ satisfying

- $\mu(\emptyset) = 0$
- for $\{E_n\}_{n \in \mathbb{N}} \subseteq \mathcal{B}$ pairwise disjoint, $\mu(\bigsqcup_{n \in \mathbb{N}} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$

Basic properties of measures.

- monotone: $A \subseteq B \implies \mu(A) \leq \mu(B)$
- countably subadditive: $\mu(\bigcup_{n \in \mathbb{N}} E_n) \leq \sum_{n=1}^{\infty} \mu(E_n)$
- continuous from below: if $E_1 \subseteq E_2 \subseteq \dots$, then $\mu(\bigcup_{n \in \mathbb{N}} E_n) = \lim_{n \rightarrow \infty} \mu(E_n)$
- continuous from above: if $E_1 \supseteq E_2 \supseteq \dots$ and $\mu(E_1) < \infty$, then $\mu(\bigcap_{n \in \mathbb{N}} E_n) = \lim_{n \rightarrow \infty} \mu(E_n)$

INTEGRATION OF SIMPLE FUNCTIONS

A **simple function** is a measurable function taking finitely many values or, equivalently, a linear combination of indicator functions of measurable sets $s = \sum_{j=1}^n c_j \mathbb{1}_{E_j}$.

The **integral of s with respect to μ** is

$$\int_X s \, d\mu = \sum_{j=1}^n c_j \mu(E_j).$$

INTEGRATION OF NONNEGATIVE FUNCTIONS

Let $f : X \rightarrow [0, \infty]$. The **integral of f with respect to μ** is $\int_X f \, d\mu = \sup\{\int_X s \, d\mu : 0 \leq s \leq f, s \text{ simple}\}$.

Monotone Convergence Theorem. If $0 \leq f_1 \leq f_2 \leq \dots \rightarrow f$, then

$$\int_X f \, d\mu = \lim_{n \rightarrow \infty} \int_X f_n \, d\mu.$$

Fatou's Lemma. If $f_n \geq 0$, then

$$\int_X \liminf_{n \rightarrow \infty} f_n \, d\mu \leq \liminf_{n \rightarrow \infty} \int_X f_n \, d\mu.$$

INTEGRATION OF COMPLEX FUNCTIONS

Decompose $f = (f_1 - f_2) + i(f_3 - f_4)$ with $f_j \geq 0$. Then f is **integrable** if $\int_X |f| \, d\mu < \infty$ (equivalently, $\int_X f_j \, d\mu < \infty$ for every $j \in \{1, 2, 3, 4\}$), and the **integral of f with respect to μ** is

$$\begin{aligned} \int_X f \, d\mu &= \left(\int_X f_1 \, d\mu - \int_X f_2 \, d\mu \right) \\ &\quad + i \left(\int_X f_3 \, d\mu - \int_X f_4 \, d\mu \right). \end{aligned}$$

Basic properties of the integral.

- triangle inequality: $|\int_X f \, d\mu| \leq \int_X |f| \, d\mu$
- linearity: $\int_X (cf + g) \, d\mu = c \int_X f \, d\mu + \int_X g \, d\mu$

Dominated Convergence Theorem. If $f_n \rightarrow f$ a.e. and $|f_n| \leq g \in L^1(\mu)$, then $f_n \rightarrow f$ in L^1 . In particular,

$$\int_X f \, d\mu = \lim_{n \rightarrow \infty} \int_X f_n \, d\mu.$$